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What are 3-pt correlations?
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Part I Part II Part III

This talk : Direct Detection of SGW with interferometers  

Question : how do we measure these things?s
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Unresolved Sources = Stochastic GW 
Stochastic : they “look” just like noise

Characterize them via correlation functions 

Power Spectrum : �h(f)h(f)�

Convention : energy density ρgw =
M2
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Figure 6: The sensitivity of LISA to a stochastic background of GWs after one year of
observation, and SNR=5 (from ref. [36]; courtesy of the LISA collaboration).
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Figure 7: The sensitivity of LISA for periodic sources, and of advanced LIGO for burst
sources, together with some expected astrophysical signals (from ref. [36]; courtesy of the
LISA collaboration).
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Ωgw =
ρgw

ρg

(2) Cannot see individual 
gravitons of SGW

(3) Only see time-averaged 
correlations

n(t)� s(t)
(1) Noise dominated

(4) Integrated over a" sky
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Part I : Inflationary Tensor 3-pt
Higher correlation functions of Stochastic GW

Eugene Lim

I. 3-PT CORRELATION FUNCTION OF STOCHASTIC GW

Our goal in this section is to derive the expected signal of 3 GW detectors, given a theoretical predictions of a

primordial GW bispectrum. This is our warm-up to calculating the �Qhh� correlator, but is interesting on its own

right.

Maldacena has calculated the primordial 3-pt correlation function of a single slow-roll scalar field inflationary model
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To detect a 3-point correlation, we need at least 3 detectors. Each detector output is a scalar stream of data Si(t)

as a function of time, where the data measures the direct strain of the detector. The data stream consists of a signal

si(t) and an inherent noise ni(t)

Si(t) = si(t) + ni(t) (8)

where in general the noise is much greater than the actual signal |n| � |s|. In the measurement of a stochastic power
spectrum, we have to correlate 2 detectors and then assume that the noise are not correlated across two detectors in

order to find a signal (recall that SGW looks like “excess” noise).

The signal to noise ratio of a power spectrum is then

SNR ∼ �s12�
(Πi�nini�)1/i

(9)

where the denominator is the product of the auto-correlation of the noise of each detector.

In the measurement of a 3-point correlation, however, although the signal is now even smaller, since detector noise

can be approximated as a gaussian, the 3-point correlation function of the noise vanishes. So, in principle, we actually

are better off in this case. Given 3 detectors, the 3-point correlation is then

�(s1(t) + n1(t))(s2(t) + n2(t))(s3(t) + n3(t))� = �s1s2s3�+ (�s1s2n3�+ �s1n2n3�+ sym) (10)
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Pure gravity tree-level self-interaction
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3-pt GW Estimator Adshead + Lim (2009)
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to Triangles (Filtering)

Peak Sensitivity Frequency
f∗

THinf N2(f∗)

Direct Detection with 3 Interferometers.

LISA (20$$)

LISA will take more than a billion years to detect 
GUT scale inflation power spectrum so is hopeless here.
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Integration TimeNoise of InstrumentScale of Inflation

Sensitivity of Detectors
to Triangles (Filtering)

Peak Sensitivity Frequency
f∗

THinf N2(f∗)

BBO (20??)

BBO : GUT Scale power spectrum ~ 5 years.
Tensor 3-pt : 106 years

T ∝ (N(f∗))
6

“SuperBBO” : improve sensitivity                                       means we can 
detect GUT scale tensor 3-pt in single digit years

Direct Detection with 3 Interferometers.

N(f∗) → 10−1N(f∗)
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Part II : 3-pt SGW from scalar sources

scalar
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scalar

Gravitational Bremsstrahlung 

�ζζh�
Preheating, Textures/

Global Phase transitions
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FIG. 3: Vertex for generation of gravitational waves from linear scalars. Wiggly lines denote gravitons propagators while dashed
lines denote scalar propagators.
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FIG. 4: Unlike inflation, SGW sourced by scalars (or any active sources) are generated at 1-loop order. Each vertex is of
order (h∂iφ∂jφ)

TT where TT indicates the traceless transverse part of the spatial partial derivatives on φ, i.e. it is simply
gravitational bremsstrahlung. The power spectrum generated by such a process will be a 1-loop diagram with two external
GW legs.

Now, today for frequencies f ! H0 we can Fourier transform, taking a0 = 1 we find, in real space
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∫

∞

−∞

f2df

∫

dΩe−2πifte2πikτf (Aij(k) sin(k · x) +Bij(k) cos(k · x)) . (B13)

Working in the co-located approximation, we can choose x = 0. We can now calculate the 3-pt function
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which leads us to consider the unequal time correlation function of three copies of the transverse traceless energy
momentum tensor;
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where we have dropped terms which vanish (by transversality of hij(k)).

1. Linear Field Limit

In the limit that the scalar fields are well described by Gaussian statistics, we can then evaluate the 6-pt function
of the scalar fields using Wick’s theorem and the scalar field propagator [18]

〈φa(k, τ)φb(k
′, τ ′)〉 = Fab(k, τ, τ

′)δ(k+ k′). (B16)

In this limit, one can understand the process in terms of the graph in fig 4. Using the rules,

15

k k ’
p

FIG. 5: The gravitational wave power spectrum generated by a scalar source is given by the 1-loop diagram.

1. Draw all diagrams, and label each vertex with a time.

2. A vertex as in fig. 3 gets a factor of −2M−2
pl Oij,mn(k)pmpn, where O(k) is the transverse traceless projector

defined in Eqn. (B4)

3. An external graviton (gravitational wave) line gets a factor of the Green’s function solution Gk(τ, τ ′) to Eqn.
(B7), where τ is the time at which the diagram is being evaluated and τ ′ is the time associated with the vertex.

4. An internal scalar line gets a “propagator,” which is technically a stochastic average: 〈φa(p, τ)φb(p, τ ′) =
Fab(p, τ, τ ′)

5. Conserve external momenta with an overall delta, δ(
∑

i ki)

6. Integrate over internal (loop) momenta

7. Integrate over times associated with each vertex from the initial time (when the interaction begins) to the final
time when the source is turned off.

We can evaluate the diagrams. The three point function is, after fourier transforming into frequency domain and
using the co-located detector approximation

〈hij(f, Ω̂)hjk(f
′, Ω̂′)hki(f

′′, Ω̂′′)〉 (B17)
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)

.

Here the factor for 4 comes from the equivalent diagrams and k = fΩ̂ etc. The power spectrum can be calculated in
the analogous manner. The power spectrum is generated by the diagram in fig. 5. We obtain

〈hij(k, τ)hij(k
′, τ)〉 = 2δ(k+ k′)Okl,mn(k)

(

2
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This result is consistent with that quoted in [18].

[1] http://www.ligo.caltech.edu/.
[2] J. R. Smith (LIGO Scientific), Class. Quant. Grav. 26, 114013 (2009), 0902.0381.
[3] http://lisa.nasa.gov/.
[4] S. Sato et al., J. Phys. Conf. Ser. 154, 012040 (2009).
[5] G. M. Harry, P. Fritschel, D. A. Shaddock, W. Folkner, and E. S. Phinney, Class. Quant. Grav. 23, 4887 (2006).
[6] M. Kamionkowski, A. Kosowsky, and A. Stebbins, Phys. Rev. D55, 7368 (1997), astro-ph/9611125.
[7] D. Baumann et al. (CMBPol Study Team), AIP Conf. Proc. 1141, 10 (2009), 0811.3919.

2-pt and 3-pt generated at 1-loop by 
identical interaction (Schematic!)

End of Inflation Preheating : causal 
process at length scale          , highly 
correlated within this scale. 

H
−1
end

But our SGW sky is composed of 
(HTeV /H0)

2 ∼ 1080 uncorrelated patches!

Fun Fact : the preheating SGW sky is even more Gaussian than 
inflationary ones.
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Part III : Gravity - Scalar Correlations

tensor

tensor

scalar

Cross-correlating tensors
with scalar

�ζhh�

Part III
CMB Anisotropy Map SGW Anisotropy Map

CGW×T (f∗, l) ≡ �δGW,lm(f∗)δT,lm�

δGW,Ω̂(f∗) ≡
P̄ (f∗)− P (f∗, Ω̂)

P̄ (f∗)

∼ �ζhh�
δPGW (f∗;x) = nT (f∗)P̄GW (f∗)ζ(x)

Maldacena (2002)

Per frequency         one can think of a graviton emitting 
hypersurface, i.e. its horizon reentry at        , with coordinate      

f∗
z∗ x

Due to scalar perturbation                   , the crossing time is 
different resulting in SGW anisotropy.      

ζ(x, z∗)

w/ P. Adshead + N. Ashfordi (WIP)

∼ 10−7
See also Dimastrogiovanni et al 
(2007) for 1-loop corrections
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Part III : Gravity - Scalar Correlations
1

FIG. 1:

Using Maldacena’s consistency condition for adiabatic
initial conditions, we can find the modulation of gravi-
tational wave power spectrum with large scale curvature
perturbations ζ(x):

δPGW (k∗;x) = nT (k∗)P̄GW (k∗)ζ(x), (1)

where we assume that the k∗ � H. nT is the tensor
spectral index:

nT (k) ≡ ∂ ln P̄GW (k)
∂ ln k

. (2)

Since the gravitational waves are generated at horizon
crossing, we can define an emission redshift z∗ for the
GW’s of a given wavenumber k∗:

k∗(1 + z∗) ∼ H(z∗). (3)

Our goal is to find the correlation between ζ(x) on z =
z∗ surface and the CMB at the last scattering surface
zLSS . The comoving distance between these two surfaces
is roughly given by:

∆∗ =
� z∗

zLSS

dz

H(z)
� (zeq/Ωm)1/2

zLSSH0
� 0.10×H−1

0

� 0.031× dA(zLSS), (4)

where we assume z∗ � zLSS , and dA(zLSS) is the angular
diameter distance to the last scattering surface. Given
the finite distance between the surfaces, we thus expect
the correlations to be significant for:

� <∼ �∗ ≡
dA(zLSS)

∆∗
� 33. (5)

Given that these are relatively large angles, let us first
focus on the Sachs-Wolfe effect in the CMB:

δT (n̂) � 1
3
Φ(rLSSn̂) � 1

5
ζ(rLSSn̂), (6)

where Φ is the metric perturbations in the longitudinal
gauge:

ds2 = (1 + 2Φ)dt2 − (1− 2Φ)a2(t)δijdxidxj . (7)
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C
G
W
xT

FIG. 2: The angular cross-power spectrum between CMB and
gravitational wave power anisotropies, as a function of multi-
pole number �, in the Sachs-Wolfe regime. The vertical scale
is normalized to unity at low �’s.

The observed anisotropy of the GW power is, on the other
hand, given by:

δGW (n̂; k∗) ≡
δPGW (k∗)
P̄GW (k∗)

|n̂

= nT (k∗)Φ(rLSSn̂) + nT (k∗)ζ(rLSSn̂)

=
8
5
nT (k∗)ζ(rLSSn̂). (8)

Here, the first term is the gravitational redshift due to
propagation from z∗ to us, while the second term is the
intrinsic inhomogeneity in PGW , as found in Eq. (1).

The angular cross-power spectrum between the GW
power and the CMB anisotropies is thus:

CGW×T (k∗, �) ≡ �δGW,�m(k∗)δ∗T,�m�

=
8
25

nT (k∗)
�

2k2dk

π
j�(kr∗)j�(krLSS)Pζ(k)

� 8nT (k∗)CTT (�)
�

�

�∗
K1

�
�

�∗

��
, (9)

where we assumed Harrison-Zeldovich power spectrum
Pζ(k) ∝ k−3, and �∗ � 1. Here, K1(x) is the modified
Bessel function of the second kind. In particular, note
the two asymptotic limits for � � �∗ and � � �∗:

xK1(x) = 1 + O(x), (10)

xK1(x) = exp(−x)
�
(πx/2)1/2 + O(x−1/2)

�
. (11)

This behavior is shown in Fig. (2). Note that �(� +
1)CTT (�) is constant in the Sachs-Wolfe regime, and thus
the � dependence of CGW×T is fixed by xK1(x) function.

In order to approximate the cross-power at larger �’s,
we will assume:

δT (n̂) � Θ(rLSSn̂) + Φ(rLSSn̂), (12)

What scales are correlated between CMB and         surfaces?z∗

l∗ ≤ dA
∆∗

= 33

∆ = Comoving Distance from CMB to z∗ ≈ (zeqΩm)1/2

zCMBH0
∼ 0.10 H

−1
0

We want to correlate          between the 
       surface and the               surface.

∼ 0.031 dA(zCMB)

z∗ zCMB

ζ(x)

Correlated around 

I.e. around 1 square degree scale on the CMB sky : requires 
SGW anisotropy map to this resolution.

w/ P. Adshead + N. Ashfordi (WIP)

Think of high gravitons                 $equency  as 
equivalent to CMB photon              freq in 
WMAP/PLANCK.

∼ GHz

f∗ ∼ Hz
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Part III : Gravity - Scalar Correlations
Constructing SGW Anisotropy Map

w/ P. Adshead + N. Ashfordi (WIP)

Chop up the sky into 1 square degree sized patches : use a beamed SGW 
interferometer.

Hard and Fast estimate : assume BBO-class detector needs 1 year to detect SGW. 

2

Inserting Eqn. (9) into Eqn. (7), and then doing the dt1, dt2, df2, df3 and dk̂2 integrals, we get

〈ss〉 =

∫

dk̂1df1f
4
1 W̃ (f1)δT (0)

∑

A1A2

e−2πf1k̂1(x1−x2)DA1(k̂1)D
A2(k̂1)

Sh(f1)

2
(10)

Now, in general the e−2πf1k̂1(x1−x2) will generate destructive interference if the detectors are badly located (the
reason correlated detectors are located far apart is to reduce correlated noise : in an ideal world you want them to
be co-located). But in theory-land, let us assume that we have nice flying spaceships, we can co-locate them so this
term vanishes. Then, the sum over the A give us a 2, while the integration over dk̂1 picks up angular area of the
beam size, which is simply

beam size =
4π2

total patches
(11)

The final signal per chunk is simply

〈ss〉 =

∫

f3
1 d log f1W̃ (f1)∆T

4π2

total patches
Sh(f1) (12)

The spectral density is related to the power spectrum by

Ωgw(f) =
π

2G
f3Sh(f). (13)

The signal Eqn. (12) is simply a whole sky signal divided by the number of patches we have divided up.
In other words, we assume that we have a pair of detectors scanning the sky, making a map (just like WMAP, we

can chop up the time series depending on their pointing) with a resolution of the size of the patch. Now, as Niayesh
has shown, we want a GW map of around 1 square degree, this translates to roughly 40000 patches.

We don’t have a real detector yet. But let us use the next to next generation detector, BBO or DECIGO, which
is suppose to obtain a SNR ∼ 1 assuming a GUT scale inflation Ωgw ∼ 10−18 in about 1 year. Since the noise per
patch remains the same, this means that by chopping up the sky into 40000 patches, we effectively reduce our SNR
by 40000, hence we will need 40000 years to make a map of the sky. This is a bit crazy...

total patches ∼ 40000 for 1 sq deg

SNRpatch ≈ SNRsky√
40000 Time ∝ SNR2 ∼ 40000 years

Need to know SGW power per patch to at least               or 10−5 5 ∼ 6σ
s0 need ∼ 107 years.

11



posteriori Motivation aka 
Why?? Eugene!?

e.g. Global Phase Transitions generation of SGW 
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Then, writing

k6〈hhh〉∆ = CNL(k3〈hh〉)3/2, (24)

where CNL is a dimensionless constant, for this theory we have

CNL =
20

π3/2
√

N
∼ O(1). (25)

for N = 4. For inflation CNL ∼ O(H/Mpl), while for this model the 3-pt function is as important as the 2-pt function.
Note that CNL is independent of the scale at which the process is occurring. This means that, even if a global phase
transition can completely mimic inflation at the level of the power spectrum, it produces a 3-pt which is distinct from
and much larger than that of inflation. The existence of such a large 3-pt correlation function relative to the 2-pt
correlation function suggests that if a B-mode signal consistent with r ∼ 0.01 was observed, by constructing the 3-pt
estimator we might determine whether its origins were consistent with inflation.

We also point out that this 3-pt would vanish in direct detection experiments for precisely the same reasons as in
the preheating case. At first it may seem that since the gravitational waves are continuously sourced that we might
be able to evade the simple argument above based on the central limit theorem. However, the power at each scale,
k, is sourced as that particular mode enters the horizon. Since direct detection experiments are sensitive to scales
on the order of the size of the solar system, the gravitational waves detected in these experiments will be primarily
composed of radiation which was emitted when the horizon scale was on the order of the size of our solar system.
This means that these gravitational waves will again look almost completely Gaussian by the central limit theorem.

III. CONCLUSIONS AND FUTURE OUTLOOK

In this paper we considered the properties of the 3-point statistics of cosmological gravitational waves from both
inflationary and non-inflationary “active” scalar sources. For the latter, we consider gravitational waves from pre-
heating driven turbulence at the end of inflation and from self-ordering scalar fields following a global phase transition
in the early universe.

Introducing a “3-pt correlation parameter” CNL, we write

k6〈hhh〉∆ = CNL(k3〈hh〉)3/2, (26)

where the ∆ here denotes the equilateral limit of the bispectrum. During inflation, metric fluctuations (gravitons)
start in a purely Gaussian state and interactions with other fluctuations are highly suppressed by the amplitude of
the observed scalar spectrum. This means that the leading order effective three graviton interaction is the tree level
interaction, and any departure from Gaussianity is highly suppressed. For GUT scale inflation, CNL ∼ Hinf/MPl ∼
10−6, and CNL measures the the scale of inflation directly, which provides a consistency check when compared to the
SGW power spectrum. Unfortunately, and unsurprisingly, we find that even a BBO/DECIGO class detector cannot
detect an inflationary 3-pt signal.

On the other hand, for SGW from scalar sources, CNL measures the strength of the effective gravitational wave
interaction, i.e. it is mediated by scalars. For these sources there is no reason to expect the higher point functions to be
suppressed relative to the 2-pt function. In highly inhomogenous phenomenon that follows any period of cosmological
turbulence, we estimate that CNL ∼ O(1) % Hinf/MP .

We investigated two different scalar sources of SGW. The first model is that of gravitational waves produced in the
era of preheating after inflation. During preheating, gravitational waves are produced with a characteristic wavelength
kp ∼ He where He is the Hubble scale at the end of inflation. While the gravitational waves are highly correlated at
this scale, since He % Htoday, such sources appear as uncorrelated patches in the sky. That is, these patches appear
to our detectors as uncorrelated point sources. The gravitational radiation we observe in our detectors is the sum of
gravitation waves coming from all directions, and is thus composed of gravitational waves from many patches. By
constructing the correlator of three time streams, we are integrating the estimator 〈h(n, f)h(n′, f ′)h(n′′, f ′′)〉 over the
entire sky. Clearly the 3-pt signal from such a source will be highly Gaussian via the central limit theorem – ironically
even more so than the inflationary signal. Nevertheless, the gravitational radiation from processes such as TeV scale

CNL ∼ 1 vs CNL ∼ Hinf/Mp (inflation)

• Tests of non-Inflationary generators of SGW.
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turbulence, we estimate that CNL ∼ O(1) % Hinf/MP .

We investigated two different scalar sources of SGW. The first model is that of gravitational waves produced in the
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• Tests of non-Inflationary generators of SGW.

• It is interesting that we can construct correlators   
between CMB and direct detection SGW : more 
tests of inflation!
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this scale, since He % Htoday, such sources appear as uncorrelated patches in the sky. That is, these patches appear
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gravitation waves coming from all directions, and is thus composed of gravitational waves from many patches. By
constructing the correlator of three time streams, we are integrating the estimator 〈h(n, f)h(n′, f ′)h(n′′, f ′′)〉 over the
entire sky. Clearly the 3-pt signal from such a source will be highly Gaussian via the central limit theorem – ironically
even more so than the inflationary signal. Nevertheless, the gravitational radiation from processes such as TeV scale
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gravitation waves coming from all directions, and is thus composed of gravitational waves from many patches. By
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• It is interesting that we can construct correlators   
between CMB and direct detection SGW : more 
tests of inflation!

If you build it, 
they wi" come!

• Somebody gotta do it.

Let’s build a 
model !

15


